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Theoretical study of solitonlike propagation of picosecond light pulses interacting
with Wannier excitons
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An analytical and numerical study of light pulse propagation in semiconductors, with pulses spectrally
centered at the lowest exciton resonance, is presented. It is shown that, in the limit of negligible phase-space
blocking effects, the equation for the excitonic polarization is equivalent to a modified version of the nonlinear
Schralinger equation, for which soliton solutions have been derived by Mihaleche[D. Mihalacheet al,,

Phys. Rev. A47, 3190(1993]. The numerical study demonstrates the solitonlike propagation of experimen-
tally relevant input pulses in CdSe crystal and assesses the influence of phase-space blocking effects and
dephasing processd$1063-651X98)00907-9

PACS numbe(s): 42.65.Tg, 42.81.Dp, 71.35.Gg

I. INTRODUCTION result in analytical soliton solutions and the simultaneous
problem that certain approximations, which are necessary for
The issue of solitonlike light pulse propagation for ul- finding analytical solutions, may result in oversimplifica-
trashort light pulses that propagate in semiconductors antions, we will present in the following a combined analytical
that are spectrally centered in the vicinity of the strongestand numerical study of solitonlikgl9] pulse propagation.
bound Wannier exciton has been investigated theoretically his approach enables us to discuss the soliton phenomena to
from several different perspectivdé—8]. Common to all b€ expected in idealized semiconductor systems, and, for the

approaches is the basic idea that optical nonlinearities nece$2Me model, to discuss modifications due to dephasing pro-
sary for the formation of solitons can result from exciton- CESSes- In Sec. Il we review briefly the well-established the-

exciton interactions and excitonic Pauli-blocking effects. Agoretical model and (_1|scus.s Its analytical soliton sollut|ons.
We show that the investigations on completely different

for theoretical investigations, the necessity for approxima- ; . )
tions leads to differences in the various treatments and difphysmal system$20] lead to soliton solutions that can also

ferences in the form of the solutions. In addition to the the-be applied to excitons. We discuss the nature of the resonant

tical studi litonlik | i h b solitons and also compare them with two well-investigated
oretical studies, - solitoniiké pulse propagation has bee ptical soliton phenomena, namely, the SIT in atomic sys-

recently reported for systems exhibiting certain similaritiestems[15 21-23 on the one hand and propagation of femto-
to Wannier excitons, namely, for light pulses in the spectralgqng bptical solitons in optical fibré&4] on the other
region of the biexciton two-photon transition in Cy®land  hang. At the same time, we amend the specific shape of the
the bound-to-impurity exciton resonance in CdS8]. solitary-wave solution given ifi8] and consider the case of
Independently of the issues of light pulse propagationexact-resonance excitation. In Sec. Ill we present a numeri-
(i.e., polariton and/or soliton issuesiltrafast optical nonlin-  ca| investigation of the soliton formation from experimen-
earities of excitons in a direct-gap semiconductor have beetally relevant nonchirped sech-shaped initial pulses and dis-
studied extensively both theoreticallysee, e.g., Refs. cuss the influence of dephasing processes. Finally, we
[11,12) and experimentally(see, e.g., Refd.13,14)). The discuss the validity of the model and the parameter regimes
resulting comprehensive theoretical framework for the defor possible experimental verification in Sec. IV and summa-
scription of excitonic optical nonlinearities has been used forize the results in Sec. V.
detailed investigations of analogies and differences of two-
level atoms and excitons in semiconductors. An important Il THEORETICAL MODEL AND ANALYTICAL
aspect linking optical nonlinearities with solitonlike light SOLUTIONS
pulse propagation is the issue of Rabi oscillations. In atomic
systems, Rabi oscillations provide the basic processes en- The interaction between a light pulse and a semiconductor
abling self-induced transparen¢$IT) [15]. Analogous pro- medium can be described semiclassically by Maxwell's
cesses in semiconductors have been studied theoretical®guations together with the semiconductor Bloch equations
(see, e.g., Ref16]) and experimentally17]. Other theoret- (MSBE). In the slowly varying envelope approximation,
ical studies of nonlinear light pulse propagation based on théhe electric field of the light is given by&(z,t)
framework of the semiconductor Bloch equations include,=1E(zt)exdi(k z— w. t)], the material polarization

for example, Refs|5,18]. P(z,t)=1P(z,t)exdi(k.z— w. t)], and Maxwell's wave
Because of the advantages of theoretical treatments th@éu'azionz casn,b)e rgdl(mtad tc? th)e] form

= 2
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wherew, is the optical carrier frequenck, is the propaga- two-dimensional casg32,33. We want to point out again
tion constant of the light pulse, ang=t—z/U andé=z are  that Eq.(2) presents only the simplest limiting case of the
the time and distance in the moving coordinate frame. Thenore general theory, in which the numerical investigation of
velocity of the moving frameyJ, is a fictional light velocity  the ultrafast excitonic shift and bleaching behavior can be
in the medium. It takes into account only those transitionsdone along the lines presented, for example, in R&&.34.

that are far off resonant with the pulse carrier frequency. ThéAn experimental observation of a blueshift of the exciton
effect of the transitions in the spectral vicinity of the light peak during passage of the pump pulse, which may be re-
pulse is treated explicitly by the equations governing thdated to the ultrashort single-pulse nonequilibrium dynamics
material polarization. These equations will be discussed irconsidered in this paper, has been reported in RB&i.

the following. The second source of the nonlinearity in E2). is the 8,

The interband polarization of direct semiconductors isterm, which is associated with phase-space blocking effects
governed by a set of generalized Bloch equations. Commoand has a direct analog in the theory of two-level systems.
approximations include the two-band approximatifre.,  Although both, the blueshift of the exciton resonangs (
one valence band and one conduction band, both with twaterm) and phase-space blocking effeci8, (term) could be
fold spin degeneragy and the screened Hartree-Fock ap-responsible for the formation of solitonlike pulses in a semi-
proximation [12]. For a recent review of the underlying conductor medium, the first one is more relevant, as we show
Green’s function techniques see, for example, RES]. In  below and as has already been indicated in RH]. The set
the following, we employ these approximations and furtherof propagation Eqs(1) and (2) is closely related to the
simplify the theory, thus restricting ourselves to semiconducmodel equations studied previously in the context of the ex-
tors with large exciton binding energies such as CuCl, CdSgitonic SIT[1]. A different aspect of the model used in this
CdSe, or ZnSe. The advantage of a large exciton bindingaper is that the exchange contributions to the MSBE are
energy is that an optical pulse centered at tlseegciton analyzed in the low intensity limifsee, e.g., Refi16] for
resonance can be chosen to be slfand, correspondingly, detailg. This leads to a modifiedhamely, linearized con-
spectrally broad without creating higher lying exciton or servation law relating the carrier density to the éxcitonic
band-to-band continuum excitations. As a result, excitationpolarization|P|2. This modified conservation law prevents
induced dephasing can be kept to a minimum and, furtherthe 8, related (phase-space fillingmechanism from being
more, the pulse duration can be made shorter than thehe actual source of the soliton formation. In other words, the
dephasing time of thestexciton polarization. The semicon- physical course, which leads to the SIT phenomenon in
ductor excitation dynamics within this model have been in-atomic systems is essentially eliminated in our model. To
vestigated in detailsee, e.g[16,25), but the consequences investigate this point in more detail, we present, in the fol-
of this model on the nonlinear propagation dynamics of thdowing, an analytical bright soliton solution for the ca8e

light pulse have not been considered. =0, i.e., for the case where the only nonlinearity is due to
The reduced semiconductor Bloch equation for the in-exciton-exciton interactions.
duced polarization of theslexciton,P(&, 7), readg12] We restrict ourselves to the case of zero detuning of the

pulse center frequency with respect to theekciton reso-
P . , i ) nance ¢=0). In the following analytical treatment we also
an —i[ 6+ Ba| P =iy, 1P+ 5[1—/3’2| PI?1Q, (2  neglect dephasing processes € 0). The soliton solution of

Egs. (1) and (2) is characterized by (¢, 7)— P(x) where

x=n—¢&/V (V is the group velocity of the soliton pulse

whereQ =d,E/# is the Rabi frequencyl,, is the interband  ithin the moving framg Thus, the set of MSBEL) and(2)
dipole matrix elementy= w,s— w| is detuning from the ex- pecomes

citon resonancey, is a phenomenological dephasing rate,
B1=(26/3)w, and B,=7 are the nonlinear exchange and
phase-space blocking parameters for tseekciton[26,27],
hwy is the exciton binding energy, arld=[4d,,/7a3]P
(a is the exciton Bohr radiys The exciton density corre-
sponding to a given value oP is given by n=2|P|?/ _
(wad), where the factor of 2 is based on the assumption of a O =2iaVP, (3b)
twofold spin degeneracy of the optical transitions.

Before proceeding to an analytical treatment of HGs.
and(2), it is worthwhile to point out the physical aspects of Wherea=(4|d,|*w{)/(fc?k ag) and “dot” denotes differ-
the excitonic nonlinearities in Eq2). There are two differ- entiation with respect ta.
ent physical sources of nonlinearities in our model. The first We consider now the case of negligible inversigy (
source is the3; term in Eq.(2), which results from noncom- =0), i.e., the model where the propagation of the bright
pensation of the band-gap renormalization and reduction g$oliton pulses is supported entirely by the exchange interac-
binding energy in the presence of light field. This noncom-tion among the excitons3; term in Eq.(2)]. We show that
pensation is in contrast to the almost perfect compensation ithe pulse propagation in this case has an interesting analogy
guasistationary pump-probe three-dimensiqB&l) configu-  with femtosecond soliton propagation in optical fibers, and,
rations as shown experimentally, for example, in R28],  in particular, with the theory developed in Rg20].
and theoretically in Refd29-31]. Deviations from this ex- For 8,=0, definingP=P’/+/B3;, we obtain the nonlinear
act compensation have been discussed and observed in thgcitonic polarization equation

p=—iglPIPP+ 5 (1- BP0, (33
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#P' J(|P'[?P") , a)| |b) — %0
&XZ +1 X =aVP. (4) _ . - =~ input pulse
Formally, Eq.(4) represents a stationary version of the modi- :EQ
fied nonlinear Schidinger equation for which analytical so- ; N\ Z
lutions have been presented in R¢f0,36,37. The nonlin- g 032 %
ear term in Eq(4) bears resemblance to the self—steepening g k|
effect that arises for femtosecond pulse propagation in non- Z N
linear optical fiberd24]. Using the stationary form of the A 0.l /\
one-soliton solution derived in R€f20], we obtain a bright 0.01 T
soliton solution for the excitonic polarization: 0oon :".\
0

2 X 0 S5 0 5 10 0 0.l 20.0 40.0 60.0
P'(x)= \[—O \ secVéx—o e, (5) Time [ps] Time [ps]

FIG. 1. (a) Computed temporal oscillations in the light-induced
where ¢(x)=3arctan€¢ ). Substituting the solutior(6) charge-carrier density a=0 for the case of coherent excitation at
for P’ into Eq.(2) and definingQ:Q’/\/IB—, we obtain the theA-exciton resonance of a CdSe crystal. The input pulse duration

corresponding solution for the electric field as is 3 ps(FWHM), the input pulse area is varied between @:Ghd
0.557. Results for different pulse areas are shifted vertically for

clarity. (b) The temporal intensity profiles after a propagation dis-

tance of 0.5um for the same excitation conditions as(@®. The

transmitted pulse intensities are normalized to the value of the cor-
” responding input intensities.

X

Q' (x) = \2x, 32 secl'(x—

0

X

X exr{ i p(X)+i arctar6 sinhx—
0

(6)

1s-exciton resonance 8&&0). The input pulse ared\(z

It is interesting that the pulse area for the soliton formation,=0) is used as variable parameter. _
which can be estimated from E¢6), depends on the input Shown in Fig. 1a) is the computed light-induced carrier

pulse duration as~ Y2 [i.e., the time integral of Eq6) and, density atz=0 as a function of timgdephasing processes
thus, the pulse area is proportional #6%2]. are neglected at this stage,=0). For weak excitation
As mentioned above, in the presence of gheterm in Eq. [A(z=0)=0.027], a typical absorption behavior is found.

(2) the solution forP and( is alwaysphase modulated. The YWhen the input pulse area is increased, the carrier density
corresponding frequency chirp is proportional 108, P|2 starts to exhibit Rabi-like oscillationgl6,25. The 0.14r

Therefore, the solitonlike pulse propagation might be viewed’ il:lsear)]/:jel(gseoré%;omﬁllz;e R;;b(j':'lisvgoﬁomsth(;nc;rggr gﬁn'
to be analogous to the temporal soliton phenomenon th Y o P y ops, ar )
hroughout this paper the pulses that yield an integer num-

arises as a result of counterbalance between nonlinear self- . . >
phase modulation and dispersion processes. l)er of Rabi-like flops in the density are referred to ds

pulses N=1,2,...).Note that the nature of the observed
Rabi-like oscillations in the exciton density is associated
l1l. NUMERICAL RESULTS AND DISCUSSION with the local optical nonlinearities as discussed in R2%].

We now study the consequences of the Rabi-like oscilla-
) tions on the propagation dynamics of the light pulses. Nu-

Whereas the model of a spectrally completely isolatednerically, the semiconductor is discretized into slices
exciton resonance seems to be realizable by careful selectiqmo 000 slices per um of propagation The optical field
of the semiconductor material, the neglect of all dephasinggajculated from the nonlinear optical response of the first
processes is a severe restriction of the theoretical modedjjce [solution of Eq.(1)] serves as an initial condition for
Also, in actual experiments it is hardly possible to use inputhe second slice, and so on. Shown in Fith) Jare the tem-
pulses corresponding to the soliton solution given by@H.  poral intensity profiles of the pulses transmitted through a
Instead, in analogy to excitation of Kerr solitons, one wouldg 5 ,m thick CdSe crystal for the same excitation conditions
hope that nonsoliton input pulses evolve automatically intoyg in Fig. 1a). For weak excitatioiA(z=0)=0.02r], we
solitonlike pulses during the course of the propagation. Iecover the results obtained for propagation of small-area
order to discuss these issues, we present in the following thgitrashort light pulses through a resonant medit@anoma-
solved using a fourth-order Runge-Kutta method with thearea, the most remarkable features observed are an increase
initial condition P(#= —<)=0. The material parameters of i, the pulse propagation velocity, the temporal pulse narrow-
bulk CdSe are usedi(w,,=1.8255 eV,w,=24.3 ps*, 8y ing, and the subsequent pulse breakup.
=5.8nm, €=9.3). The input pulse envelope function is  An intuitive explanation of the pulse velocity dynamics is
chosen to bé=(7) =Egsech(y/ 79), which is the experimen- as follows. Below the threshold for the soliton formation, the
tally relevant case. The input pulse durationris3 ps[in-  only influence of the exciton resonance on the pulse propa-
tensity full width at half maximuniFWHM), 7=1.76rq] and  gation is an absorption at the central pulse frequency. The
the center frequency of the pulse is chosen to be at thepectral wings of the pulse remain unaffected by the absorp-

A. Pulse propagation dynamics
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a) No dephasing: Linear dephasing: Nonlinear dephasing:
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FIG. 3. Computed temporal intensity profiles of the transmitted
0 z=0 pulses ¢=0.5um). Results for different input pulse areas are
0.0 50.0 1000 shifted vertically for clarity. Three different cases are shown: no
Time [ps] dephasing, y,=0, Im(8;)=0 (left); linear dephasing, y,

. ) ) #0, Im(B1)=0 (centra); and intensity-dependent dephasing,
FIG. 2. (a) Computed temporal intensity profiles of the=2 , _q  1m(8,)+0 (right). The transmitted pulse intensities are

pulse at different propagation distancesThe transmitted pulse normajized to the value of the corresponding input intensities.
intensities are normalized to the value of the corresponding input

intensities.(b) The same as ifa) for the N=3 pulse.

order of magnitude is suggested by the contributions to the
tion, and their inteference during propagation leads to th&emiconductor Bloch equations beyond the Hartree-Fock ap-
frequency beats which are seen in the time domain as osciproximation [see, for example, Eqs395—(396) of Ref.
lations in the pulse envelop@nomalous absorptiof89]).  [16]]. While it is difficult to determine the exaxt complex
The front of this modulated signal travels at the speed closeenormalization of3; in purely excitonic systems, it is in-
to the light velocity in the medium. Above the threshold for structive to study the influence of this renormalization on
the soliton formation, the nonlinear shift ob&Exciton Ryd-  pulse-propagation characteristics with parametric values for
berg energy described by tig term in Eq.(2) effectively  Ag;.
detunes the pulse central frequency from the exact exciton As for the nonlinear dephasin@naginary part ofA 8;),
resonance. As the initial pulse area increases, the nonlineahe can see from Fig. 3 that both linear and nonlinear
shift of the resonance frequency increases as well, and tf’(ﬁhtensity_depende)mjephasing processes lead to the same
pulse travels faster through the medium, as it is seen in Figffect on the transmitted pulse profile—they tend to elimi-
1(b). As for the pulse narrowing, one can see from E). nate the pulse breakup features. More parametric dependen-
that an increase in thénitial) pulse amplitude results in cjes of pulse propagation characteristicsAof, will be dis-
increased soliton amplitude which, in turn, yields a decreasgussed belowcf. Fig. 7).
in the soliton duration. The issue of pulse breakup will be

discussed in the following subsection. C. Pulse propagation characteristics: pulse area and energy

It is important to emphasize that, in contrast to atomic
SIT, the number of pulses into which a given input pulse

Figures 1b) and 2 demonstrate the effect of propagation-preaks up during propagation does not only depend on the
induced pulse breakup which takes place for larger-arearea of the input pulse, but also on its duration. For example,
pulses. For comparison, we also show results for a nonzerpe specific areas defining tHé=1,2,3 pulses in Fig. 1
dephasing rate in Fig. 3. In Fig(&, the specific features of would have been different if we had chosen a different du-
the pulse breakup are shown for tNe=2 pulse in the case ration of the input pulse. This information can be visualized
¥2=0: the pulse breaks into two pulses, which have differenby representing the excitation conditions that are required to
amplitudes and velocities—the smaller-amplitude pulsegenerateN pulses in anA-7 (input pulse area versus input
moves slower. Thé&l=3 pulse in Fig. 20) breaks into three  pulse duration diagram. In Fig. 4, the two lowest-order
pulses during the propagation. An analysis of the effects obranches associated with the formation of e 1 andN
dephasing on pulse propagation is presented in Fig. 3, where; 2 pulses are plotted. Note that, in the case of atomic SIT,
for various input intensities, the results without dephasinghe A-7 diagram contains horizontal lines At= 27 and 4
(left), with linear dephasing,y,#0, (centra) and with  for the two lowest-order soliton branchgks,21,23. In Fig.
intensity-dependent dephasing, 1) # 0, (right) are plot- 4 we compare th&l=1 numerical branch with tha-r cor-
ted. The nonlinear dephasing is introduced by taking a comre|ation of the analytical model discussed above, i.e. (6.
plex value of the nonlinear exchange paramefgy=47  which predicts ar Y2 dependence of the pulse area. The
—ApB; with ,82:(26/3)% and A,81=0.1,8f1’(1+i). Such a constant of proportionality between area and duration was
model, i.e., a reduction of the real part 8f and simulta- obtained from a numerical integration of E() and the
neous occurrence of an imaginary part®f by the same definition of the effective pulse ar¢&,40|

B. Pulse breakup and influence of dephasing
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& 038 0 0.25 0.5
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FIG. 4. TheA-r diagram(input pulse area vs input pulse dura-  FIG. 6. Computed normalized transmitted pulse energy vs input
tion) for the two lowest-order branches corresponding to the excipulse area foa 3 psinput pulse after a propagation distancezof
tation conditions for formation of thel=1 andN=2 pulses. The =0.25um in the casey,=0. The maxima of the plotted curve
analytical7~ > dependence for th=1 pulse in the casB,=01is  correspond to the pulses with=1,2,3. The inset shows the nor-
shown as dashed line. Note that for atomic SIT fhe diagram  malized pulse energy vs propagation distance in the cases of the
would contain horizontal lines aA=27 and 47 for the two  N=1 pulse andy,=0 (solid ling), the N=1 pulse andy,=0.05

lowest-order soliton branches. ps ! (dashed ling and a weak 0.02 pulse andy,=0.05 ps*
(dotted line.
2 21172
A(2)= {f ReQ(z, ﬂ)]dﬂ] +U 'm[Q(Zﬂ?)]d’?] } - when Eq.(7) reduces to the usual pulse area definifibf].

(7) A comparison with so-called chirped S[#0] shows that the
pulse area dynamics in our model is clearly differésge
Good agreement between the analytiggy € 0) and the nu- also Ref[41)).
merical (8,#0) A-7 dependence for th&l=1 pulse indi- In Fig. 6, we plot the normalized pulse energy
cates that the origin of thA-7 correlation is mainly due to
the excitonic exchange interactiong,(term). Ceg [~ )
To further analyze the stability of low-order solitonlike W(z)= 7] [E(z,9)|*d7 ®
pulses, we show in Fig. 5 the dependence of the pulse area

on propagation distance. In the case of Me 1 pulse with 55 5 function of the input pulse area for the fixed propagation
A(0)=0.14m, the pulse area is relatively well conserved gistance of 0.25m. The maxima of the plotted curve cor-
during propagation. Thisl=2 pulse shows a completely dif- respond to the pulses witk=1, N=2, andN=3 (y,=0).
ferent behavior than thBl=1 pulse: its pulse area exhibits The inset in Fig. 6 shows the transmitted pulse energy as a
harmonic oscillations as function of propagation distancesnction of propagation distance: the weak pulse (@)%
Note that the spatial period of t#z) oscillations depends apidly absorbed during propagation whereas the energy of
on 7. the period increases with decreasingA direct com-  neN=1 pulse remains nearly constant in the case 0. A
parison of the area characteristics with the well-known Mc-gp41 energy loss for thél=1 pulse could be associated
Call and Hahn area theorem would be possible only in th&yith 4 contribution of the weak anomalous absorption signal
case of vanishing phase modulation of the pulseQ#n0,  hat is delocalized in time and cannot be filtered out of the
numerical integration. The basic features of the solid curve
shown in Fig. 6 resemble typical soliton phenomé¢aa—

-------- N=2 24], i.e., the thresholdlike behavior of the transmitted energy
at a certain pulse area as well as higher order solutions ex-
hibiting a relative transmitted-pulse energy of values ap-
proaching 1.

Finally, we investigate the effect of reduction in the value
of the nonlinear parametgd; on the soliton dynamics. Fig-
ure 7 shows that a decrease in tBg value leads to an
increase in the area for tié=1 soliton formation. This re-
sult is quite obvious: the less nonlinearity is attainable from
the medium, the more input energy is required to form the
soliton pulses.

0.4

° o
3] L5

Pulse area [units of 7]
=3

0.0 0.25 0.5 0.75 1.0
Propagation distance [pm]
IV. VALIDITY OF THE MODEL
FIG. 5. Effective pulse areA(z) [see Eq.7)] vs propagation
distance for 3 ps pulses with different initial areas. Shown are the The range of strict validity of the the analytical model and
A(z) branches corresponding to the=1 [A(0)=0.147] and the  the solution(6) is restricted to the case of low inversion and,
N=2 [A(0)=0.327] pulses. consequently, rather long pulses. More specifically, one can
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o~

to higher-order exciton-exciton interactions and, at the same

O Bi=Q6/3w, time, keeps the excitation-induced dephasing to a minimum.

7=300 fs

8]

V. SUMMARY

A solitonlike propagation of low-intensity ultrashort light
pulses in semiconductors, spectrally centered at the
1s-exciton resonance, has been studied. An analytical soliton
solution of the propagation equations for the electric field
amplitude and the induced excitonic polarization has been
T=4ps obtained in the limit of negligible phase-space filling effects.
We have discussed the formal similarities between the exci-
—© tonic solitonlike pulse propagation and a model describing

0 2 4 6 8 10 propagation of temporal bright Kerr solitons in the presence
Bif wy of self-steepening effects.
_ , _ We have demonstrated numerically the formation and

FIG. 7. TheA-B, diagram(input pulse area vs nonlinear ex- n-qna5ation of solitary waves for experimentally relevant
change parameteshows the effect of reduction in the real part of 1,oqchirned sech-shaped initial pulses. The characteristics of
the parametep, on the area of the fundamental solitoN<{1).  hage solitary pulses have been studied in detail and the as-
The res:ults for two different input pulse durations are shown forsumptions underlying the soliton model have been discussed.
comparison. We have shown that the pulse breakup, predicted by the
model, is less pronounced in the presence of linear and

estimate from Eq(6) that, in the case of bulk CdSe with excitation-induced dephasing processes. The results may be
w,=24.3ps! (16 meV), if the upper limit for the carrier useful for the understanding of more comprehensive models

occupation function is chosen to be Ggenerally, it is be- 0based on the numerical solution of the Maxwell-
tween 0 and i, the duration of the soliton is 5.4 gEWHM semiconductor Bloch equations mg:ludmg many-bo_dy effects
in intensity). The additional condition of negligible linear SUch as screening and excitation-induced dephasing.
dephasing(which, in the low excitation regime, is mainly

given by the intrinsic dephasing rat@ould be fulfilled if the ACKNOWLEDGMENTS
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