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Theoretical study of solitonlike propagation of picosecond light pulses interacting
with Wannier excitons

I. Talanina, D. Burak, R. Binder, H. Giessen,* and N. Peyghambarian
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721
~Received 2 June 1997; revised manuscript received 4 February 1998!

An analytical and numerical study of light pulse propagation in semiconductors, with pulses spectrally
centered at the lowest exciton resonance, is presented. It is shown that, in the limit of negligible phase-space
blocking effects, the equation for the excitonic polarization is equivalent to a modified version of the nonlinear
Schrödinger equation, for which soliton solutions have been derived by Mihalacheet al. @D. Mihalacheet al.,
Phys. Rev. A47, 3190~1993!#. The numerical study demonstrates the solitonlike propagation of experimen-
tally relevant input pulses in CdSe crystal and assesses the influence of phase-space blocking effects and
dephasing processes.@S1063-651X~98!00907-6#

PACS number~s!: 42.65.Tg, 42.81.Dp, 71.35.Gg
l-
an
s
al

ce
n-
A
a

d
e

ee
ie
tra

io

ee
.

de
fo
o

an
t

m
e

ca

th
de

th

us
for

a-
al

na to
r the
pro-
he-
ns.
nt
o
nant
ted
ys-
o-

the
f
eri-
n-
dis-
we
es
a-

ctor
ll’s
ons
,

I. INTRODUCTION

The issue of solitonlike light pulse propagation for u
trashort light pulses that propagate in semiconductors
that are spectrally centered in the vicinity of the stronge
bound Wannier exciton has been investigated theoretic
from several different perspectives@1–8#. Common to all
approaches is the basic idea that optical nonlinearities ne
sary for the formation of solitons can result from excito
exciton interactions and excitonic Pauli-blocking effects.
for theoretical investigations, the necessity for approxim
tions leads to differences in the various treatments and
ferences in the form of the solutions. In addition to the th
oretical studies, solitonlike pulse propagation has b
recently reported for systems exhibiting certain similarit
to Wannier excitons, namely, for light pulses in the spec
region of the biexciton two-photon transition in CuCl@9# and
the bound-to-impurity exciton resonance in CdS@10#.

Independently of the issues of light pulse propagat
~i.e., polariton and/or soliton issues!, ultrafast optical nonlin-
earities of excitons in a direct-gap semiconductor have b
studied extensively both theoretically~see, e.g., Refs
@11,12#! and experimentally~see, e.g., Refs.@13,14#!. The
resulting comprehensive theoretical framework for the
scription of excitonic optical nonlinearities has been used
detailed investigations of analogies and differences of tw
level atoms and excitons in semiconductors. An import
aspect linking optical nonlinearities with solitonlike ligh
pulse propagation is the issue of Rabi oscillations. In ato
systems, Rabi oscillations provide the basic processes
abling self-induced transparency~SIT! @15#. Analogous pro-
cesses in semiconductors have been studied theoreti
~see, e.g., Ref.@16#! and experimentally@17#. Other theoret-
ical studies of nonlinear light pulse propagation based on
framework of the semiconductor Bloch equations inclu
for example, Refs.@5,18#.

Because of the advantages of theoretical treatments

*Present address: Fachbereich Physik, Philipps-Universita¨t Mar-
burg, 35032 Marburg, Germany.
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result in analytical soliton solutions and the simultaneo
problem that certain approximations, which are necessary
finding analytical solutions, may result in oversimplific
tions, we will present in the following a combined analytic
and numerical study of solitonlike@19# pulse propagation.
This approach enables us to discuss the soliton phenome
be expected in idealized semiconductor systems, and, fo
same model, to discuss modifications due to dephasing
cesses. In Sec. II we review briefly the well-established t
oretical model and discuss its analytical soliton solutio
We show that the investigations on completely differe
physical systems@20# lead to soliton solutions that can als
be applied to excitons. We discuss the nature of the reso
solitons and also compare them with two well-investiga
optical soliton phenomena, namely, the SIT in atomic s
tems@15,21–23# on the one hand and propagation of femt
second optical solitons in optical fibres@24# on the other
hand. At the same time, we amend the specific shape of
solitary-wave solution given in@8# and consider the case o
exact-resonance excitation. In Sec. III we present a num
cal investigation of the soliton formation from experime
tally relevant nonchirped sech-shaped initial pulses and
cuss the influence of dephasing processes. Finally,
discuss the validity of the model and the parameter regim
for possible experimental verification in Sec. IV and summ
rize the results in Sec. V.

II. THEORETICAL MODEL AND ANALYTICAL
SOLUTIONS

The interaction between a light pulse and a semicondu
medium can be described semiclassically by Maxwe
equations together with the semiconductor Bloch equati
~MSBE!. In the slowly varying envelope approximation
the electric field of the light is given byE(z,t)
5 1

2 Ẽ(z,t)exp@ i (kLz2vLt)#, the material polarization
P(z,t)5 1

2 P̃(z,t)exp@ i (kLz2vLt)#, and Maxwell’s wave
equation can be reduced to the form

]Ẽ~j,h!

]j
5 i

2p

c2

vL
2

kL
P̃~j,h!, ~1!
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PRE 58 1075THEORETICAL STUDY OF SOLITONLIKE . . .
wherevL is the optical carrier frequency,kL is the propaga-
tion constant of the light pulse, andh5t2z/U andj5z are
the time and distance in the moving coordinate frame. T
velocity of the moving frame,U, is a fictional light velocity
in the medium. It takes into account only those transitio
that are far off resonant with the pulse carrier frequency. T
effect of the transitions in the spectral vicinity of the lig
pulse is treated explicitly by the equations governing
material polarization. These equations will be discussed
the following.

The interband polarization of direct semiconductors
governed by a set of generalized Bloch equations. Comm
approximations include the two-band approximation~i.e.,
one valence band and one conduction band, both with t
fold spin degeneracy!, and the screened Hartree-Fock a
proximation @12#. For a recent review of the underlyin
Green’s function techniques see, for example, Ref.@16#. In
the following, we employ these approximations and furth
simplify the theory, thus restricting ourselves to semicond
tors with large exciton binding energies such as CuCl, C
CdSe, or ZnSe. The advantage of a large exciton bind
energy is that an optical pulse centered at the 1s-exciton
resonance can be chosen to be short~and, correspondingly
spectrally broad! without creating higher lying exciton o
band-to-band continuum excitations. As a result, excitati
induced dephasing can be kept to a minimum and, furth
more, the pulse duration can be made shorter than
dephasing time of the 1s-exciton polarization. The semicon
ductor excitation dynamics within this model have been
vestigated in detail~see, e.g.@16,25#!, but the consequence
of this model on the nonlinear propagation dynamics of
light pulse have not been considered.

The reduced semiconductor Bloch equation for the
duced polarization of the 1s exciton,P(j,h), reads@12#

]P

] h
52 i @d1b1uPu22 ig2#P1

i

2
@12b2uPu2#V, ~2!

whereV5dcvẼ/\ is the Rabi frequency,dcv is the interband
dipole matrix element,d5v1s2vL is detuning from the ex-
citon resonance,g2 is a phenomenological dephasing ra
b15(26/3)vb and b257 are the nonlinear exchange an
phase-space blocking parameters for the 1s exciton @26,27#,
\vb is the exciton binding energy, andP̃5@4dcv /pa0

3#P
(a0 is the exciton Bohr radius!. The exciton density corre
sponding to a given value ofP is given by n52uPu2/
(pa0

3), where the factor of 2 is based on the assumption o
twofold spin degeneracy of the optical transitions.

Before proceeding to an analytical treatment of Eqs.~1!
and ~2!, it is worthwhile to point out the physical aspects
the excitonic nonlinearities in Eq.~2!. There are two differ-
ent physical sources of nonlinearities in our model. The fi
source is theb1 term in Eq.~2!, which results from noncom
pensation of the band-gap renormalization and reduction
binding energy in the presence of light field. This nonco
pensation is in contrast to the almost perfect compensatio
quasistationary pump-probe three-dimensional~3D! configu-
rations as shown experimentally, for example, in Ref.@28#,
and theoretically in Refs.@29–31#. Deviations from this ex-
act compensation have been discussed and observed i
e
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two-dimensional case@32,33#. We want to point out again
that Eq.~2! presents only the simplest limiting case of th
more general theory, in which the numerical investigation
the ultrafast excitonic shift and bleaching behavior can
done along the lines presented, for example, in Refs.@16,34#.
An experimental observation of a blueshift of the excit
peak during passage of the pump pulse, which may be
lated to the ultrashort single-pulse nonequilibrium dynam
considered in this paper, has been reported in Ref.@35#.

The second source of the nonlinearity in Eq.~2! is theb2
term, which is associated with phase-space blocking effe
and has a direct analog in the theory of two-level syste
Although both, the blueshift of the exciton resonance (b1
term! and phase-space blocking effects (b2 term! could be
responsible for the formation of solitonlike pulses in a sem
conductor medium, the first one is more relevant, as we sh
below and as has already been indicated in Ref.@25#. The set
of propagation Eqs.~1! and ~2! is closely related to the
model equations studied previously in the context of the
citonic SIT @1#. A different aspect of the model used in th
paper is that the exchange contributions to the MSBE
analyzed in the low intensity limit~see, e.g., Ref.@16# for
details!. This leads to a modified~namely, linearized! con-
servation law relating the carrier density to the 1s excitonic
polarization uPu2. This modified conservation law preven
the b2 related~phase-space filling! mechanism from being
the actual source of the soliton formation. In other words,
physical course, which leads to the SIT phenomenon
atomic systems is essentially eliminated in our model.
investigate this point in more detail, we present, in the f
lowing, an analytical bright soliton solution for the caseb2
50, i.e., for the case where the only nonlinearity is due
exciton-exciton interactions.

We restrict ourselves to the case of zero detuning of
pulse center frequency with respect to the 1s-exciton reso-
nance (d50). In the following analytical treatment we als
neglect dephasing processes (g250). The soliton solution of
Eqs. ~1! and ~2! is characterized byP(j,h)→P(x) where
x5h2j/V (V is the group velocity of the soliton puls
within the moving frame!. Thus, the set of MSBE~1! and~2!
becomes

Ṗ52 ib1uPu2P1
i

2
~12b2uPu2!V, ~3a!

V̇52iaVP, ~3b!

wherea5(4udcvu2vL
2)/(\c2kLa0

3) and ‘‘dot’’ denotes differ-
entiation with respect tox.

We consider now the case of negligible inversion (b2
50), i.e., the model where the propagation of the brig
soliton pulses is supported entirely by the exchange inte
tion among the excitons@b1 term in Eq.~2!#. We show that
the pulse propagation in this case has an interesting ana
with femtosecond soliton propagation in optical fibers, a
in particular, with the theory developed in Ref.@20#.

For b250, definingP5P8/Ab1, we obtain the nonlinear
excitonic polarization equation
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]2P8

]x2
1 i

]~ uP8u2P8!

]x
5aVP8. ~4!

Formally, Eq.~4! represents a stationary version of the mo
fied nonlinear Schro¨dinger equation for which analytical so
lutions have been presented in Refs.@20,36,37#. The nonlin-
ear term in Eq.~4! bears resemblance to the self–steepen
effect that arises for femtosecond pulse propagation in n
linear optical fibers@24#. Using the stationary form of the
one-soliton solution derived in Ref.@20#, we obtain a bright
soliton solution for the excitonic polarization:

P8~x!5A 2

x0
AsechS x

x0
Deif~x!, ~5!

where f(x)53arctan(e2x/x0). Substituting the solution~6!
for P8 into Eq. ~2! and definingV5V8/Ab1, we obtain the
corresponding solution for the electric field as

V8~x!5A2x0
23/2AsechS x

x0
D

3expF if~x!1 i arctanS sinh
x

x0
D G . ~6!

It is interesting that the pulse area for the soliton formati
which can be estimated from Eq.~6!, depends on the inpu
pulse duration ast21/2 @i.e., the time integral of Eq.~6! and,
thus, the pulse area is proportional tot21/2#.

As mentioned above, in the presence of theb1 term in Eq.
~2! the solution forP andV is alwaysphase modulated. Th
corresponding frequency chirpḟ is proportional tob1uPu2.
Therefore, the solitonlike pulse propagation might be view
to be analogous to the temporal soliton phenomenon
arises as a result of counterbalance between nonlinear
phase modulation and dispersion processes.

III. NUMERICAL RESULTS AND DISCUSSION

A. Pulse propagation dynamics

Whereas the model of a spectrally completely isola
exciton resonance seems to be realizable by careful sele
of the semiconductor material, the neglect of all dephas
processes is a severe restriction of the theoretical mo
Also, in actual experiments it is hardly possible to use in
pulses corresponding to the soliton solution given by Eq.~6!.
Instead, in analogy to excitation of Kerr solitons, one wou
hope that nonsoliton input pulses evolve automatically i
solitonlike pulses during the course of the propagation.
order to discuss these issues, we present in the following
results of a numerical investigation. Equations~1! and~2! are
solved using a fourth-order Runge-Kutta method with
initial condition P(h52`)50. The material parameters o
bulk CdSe are used (\v1s51.8255 eV,vb524.3 ps21, a0
55.8 nm, e059.3). The input pulse envelope function
chosen to beẼ(h)5E0sech(h/t0), which is the experimen-
tally relevant case. The input pulse duration ist53 ps @in-
tensity full width at half maximum~FWHM!, t51.76t0# and
the center frequency of the pulse is chosen to be at
-
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1s-exciton resonance (d50). The input pulse areaA(z
50) is used as variable parameter.

Shown in Fig. 1~a! is the computed light-induced carrie
density atz50 as a function of time~dephasing processe
are neglected at this stage,g250). For weak excitation
@A(z50)50.02p#, a typical absorption behavior is found
When the input pulse area is increased, the carrier den
starts to exhibit Rabi-like oscillations@16,25#. The 0.14p
pulse yields one complete Rabi-like flop in the carrier de
sity and the 0.32p pulse yields two flops, and so on
Throughout this paper the pulses that yield an integer nu
ber of Rabi-like flops in the density are referred to as ‘‘N’’
pulses (N51,2, . . . ).Note that the nature of the observe
Rabi-like oscillations in the exciton density is associat
with the local optical nonlinearities as discussed in Ref.@25#.

We now study the consequences of the Rabi-like osci
tions on the propagation dynamics of the light pulses. N
merically, the semiconductor is discretized into slic
~10 000 slices per 1mm of propagation!. The optical field
calculated from the nonlinear optical response of the fi
slice @solution of Eq.~1!# serves as an initial condition fo
the second slice, and so on. Shown in Fig. 1~b! are the tem-
poral intensity profiles of the pulses transmitted through
0.5mm thick CdSe crystal for the same excitation conditio
as in Fig. 1~a!. For weak excitation@A(z50)50.02p#, we
recover the results obtained for propagation of small-a
ultrashort light pulses through a resonant medium~anoma-
lous absorption! @38,39#. With an increase in the input puls
area, the most remarkable features observed are an inc
in the pulse propagation velocity, the temporal pulse narro
ing, and the subsequent pulse breakup.

An intuitive explanation of the pulse velocity dynamics
as follows. Below the threshold for the soliton formation, t
only influence of the exciton resonance on the pulse pro
gation is an absorption at the central pulse frequency.
spectral wings of the pulse remain unaffected by the abs

FIG. 1. ~a! Computed temporal oscillations in the light-induce
charge-carrier density atz50 for the case of coherent excitation
theA-exciton resonance of a CdSe crystal. The input pulse dura
is 3 ps~FWHM!, the input pulse area is varied between 0.02p and
0.55p. Results for different pulse areas are shifted vertically
clarity. ~b! The temporal intensity profiles after a propagation d
tance of 0.5mm for the same excitation conditions as in~a!. The
transmitted pulse intensities are normalized to the value of the
responding input intensities.
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tion, and their inteference during propagation leads to
frequency beats which are seen in the time domain as o
lations in the pulse envelope~anomalous absorption@39#!.
The front of this modulated signal travels at the speed cl
to the light velocity in the medium. Above the threshold f
the soliton formation, the nonlinear shift of 1s-exciton Ryd-
berg energy described by theb1 term in Eq.~2! effectively
detunes the pulse central frequency from the exact exc
resonance. As the initial pulse area increases, the nonli
shift of the resonance frequency increases as well, and
pulse travels faster through the medium, as it is seen in
1~b!. As for the pulse narrowing, one can see from Eq.~6!
that an increase in the~initial! pulse amplitude results in
increased soliton amplitude which, in turn, yields a decre
in the soliton duration. The issue of pulse breakup will
discussed in the following subsection.

B. Pulse breakup and influence of dephasing

Figures 1~b! and 2 demonstrate the effect of propagatio
induced pulse breakup which takes place for larger-a
pulses. For comparison, we also show results for a non
dephasing rate in Fig. 3. In Fig. 2~a!, the specific features o
the pulse breakup are shown for theN52 pulse in the case
g250: the pulse breaks into two pulses, which have differ
amplitudes and velocities—the smaller-amplitude pu
moves slower. TheN53 pulse in Fig. 2~b! breaks into three
pulses during the propagation. An analysis of the effects
dephasing on pulse propagation is presented in Fig. 3, wh
for various input intensities, the results without dephas
~left!, with linear dephasing,g2Þ0, ~central! and with
intensity-dependent dephasing, Im(b1)Þ0, ~right! are plot-
ted. The nonlinear dephasing is introduced by taking a co
plex value of the nonlinear exchange parameter:b15b1

0

2Db1 with b1
05(26/3)vb and Db150.1b1

0(11 i ). Such a
model, i.e., a reduction of the real part ofb1 and simulta-
neous occurrence of an imaginary part ofb1 by the same

FIG. 2. ~a! Computed temporal intensity profiles of theN52
pulse at different propagation distancesz. The transmitted pulse
intensities are normalized to the value of the corresponding in
intensities.~b! The same as in~a! for the N53 pulse.
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order of magnitude is suggested by the contributions to
semiconductor Bloch equations beyond the Hartree-Fock
proximation @see, for example, Eqs.~395!–~396! of Ref.
@16##. While it is difficult to determine the exaxt comple
renormalization ofb1 in purely excitonic systems, it is in
structive to study the influence of this renormalization
pulse-propagation characteristics with parametric values
Db1.

As for the nonlinear dephasing~imaginary part ofDb1),
one can see from Fig. 3 that both linear and nonlin
~intensity-dependent! dephasing processes lead to the sa
effect on the transmitted pulse profile—they tend to elim
nate the pulse breakup features. More parametric depen
cies of pulse propagation characteristics onDb1 will be dis-
cussed below~cf. Fig. 7!.

C. Pulse propagation characteristics: pulse area and energy

It is important to emphasize that, in contrast to atom
SIT, the number of pulses into which a given input pul
breaks up during propagation does not only depend on
area of the input pulse, but also on its duration. For exam
the specific areas defining theN51,2,3 pulses in Fig. 1
would have been different if we had chosen a different d
ration of the input pulse. This information can be visualiz
by representing the excitation conditions that are required
generateN pulses in anA-t ~input pulse area versus inpu
pulse duration! diagram. In Fig. 4, the two lowest-orde
branches associated with the formation of theN51 andN
52 pulses are plotted. Note that, in the case of atomic S
the A-t diagram contains horizontal lines atA52p and 4p
for the two lowest-order soliton branches@15,21,22#. In Fig.
4, we compare theN51 numerical branch with theA-t cor-
relation of the analytical model discussed above, i.e., Eq.~6!,
which predicts at21/2 dependence of the pulse area. T
constant of proportionality between area and duration w
obtained from a numerical integration of Eq.~6! and the
definition of the effective pulse area@5,40#

ut

FIG. 3. Computed temporal intensity profiles of the transmit
pulses (z50.5 mm). Results for different input pulse areas a
shifted vertically for clarity. Three different cases are shown:
dephasing, g250, Im(b1)50 ~left!; linear dephasing, g2

Þ0, Im(b1)50 ~central!; and intensity-dependent dephasin
g250, Im(b1)Þ0 ~right!. The transmitted pulse intensities a
normalized to the value of the corresponding input intensities.
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A~z!5F H E Re@V~z,h!#dhJ 2

1 H E Im@V~z,h!#dhJ 2G1/2

.

~7!

Good agreement between the analytical (b250) and the nu-
merical (b2Þ0) A-t dependence for theN51 pulse indi-
cates that the origin of theA-t correlation is mainly due to
the excitonic exchange interactions (b1 term!.

To further analyze the stability of low-order solitonlik
pulses, we show in Fig. 5 the dependence of the pulse
on propagation distance. In the case of theN51 pulse with
A(0)50.14p, the pulse area is relatively well conserve
during propagation. TheN52 pulse shows a completely dif
ferent behavior than theN51 pulse: its pulse area exhibit
harmonic oscillations as function of propagation distan
Note that the spatial period of theA(z) oscillations depends
on t: the period increases with decreasingt. A direct com-
parison of the area characteristics with the well-known M
Call and Hahn area theorem would be possible only in
case of vanishing phase modulation of the pulse, ImV→0,

FIG. 4. TheA-t diagram~input pulse area vs input pulse dur
tion! for the two lowest-order branches corresponding to the e
tation conditions for formation of theN51 andN52 pulses. The
analyticalt21/2 dependence for theN51 pulse in the caseb250 is
shown as dashed line. Note that for atomic SIT theA-t diagram
would contain horizontal lines atA52p and 4p for the two
lowest-order soliton branches.

FIG. 5. Effective pulse areaA(z) @see Eq.~7!# vs propagation
distance for 3 ps pulses with different initial areas. Shown are
A(z) branches corresponding to theN51 @A(0)50.14p# and the
N52 @A(0)50.32p# pulses.
ea

.

-
e

when Eq.~7! reduces to the usual pulse area definition@15#.
A comparison with so-called chirped SIT@40# shows that the
pulse area dynamics in our model is clearly different~see
also Ref.@41#!.

In Fig. 6, we plot the normalized pulse energy

W~z!5
ce0

2 E uẼ~z,h!u2dh ~8!

as a function of the input pulse area for the fixed propaga
distance of 0.25mm. The maxima of the plotted curve co
respond to the pulses withN51, N52, andN53 (g250).
The inset in Fig. 6 shows the transmitted pulse energy a
function of propagation distance: the weak pulse (0.02p) is
rapidly absorbed during propagation whereas the energ
theN51 pulse remains nearly constant in the caseg250. A
small energy loss for theN51 pulse could be associate
with a contribution of the weak anomalous absorption sig
that is delocalized in time and cannot be filtered out of
numerical integration. The basic features of the solid cu
shown in Fig. 6 resemble typical soliton phenomena@22–
24#, i.e., the thresholdlike behavior of the transmitted ene
at a certain pulse area as well as higher order solutions
hibiting a relative transmitted-pulse energy of values a
proaching 1.

Finally, we investigate the effect of reduction in the val
of the nonlinear parameterb1 on the soliton dynamics. Fig
ure 7 shows that a decrease in theb1 value leads to an
increase in the area for theN51 soliton formation. This re-
sult is quite obvious: the less nonlinearity is attainable fro
the medium, the more input energy is required to form
soliton pulses.

IV. VALIDITY OF THE MODEL

The range of strict validity of the the analytical model a
the solution~6! is restricted to the case of low inversion an
consequently, rather long pulses. More specifically, one

i-

e

FIG. 6. Computed normalized transmitted pulse energy vs in
pulse area for a 3 psinput pulse after a propagation distance ofz
50.25mm in the caseg250. The maxima of the plotted curve
correspond to the pulses withN51,2,3. The inset shows the nor
malized pulse energy vs propagation distance in the cases o
N51 pulse andg250 ~solid line!, the N51 pulse andg250.05
ps21 ~dashed line!, and a weak 0.02p pulse andg250.05 ps21

~dotted line!.
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estimate from Eq.~6! that, in the case of bulk CdSe wit
vb524.3 ps21 (16 meV), if the upper limit for the carrie
occupation function is chosen to be 0.1~generally, it is be-
tween 0 and 1!, the duration of the soliton is 5.4 ps~FWHM
in intensity!. The additional condition of negligible linea
dephasing~which, in the low excitation regime, is mainl
given by the intrinsic dephasing rate! would be fulfilled if the
dephasing time is, for example, in the 10 ps regime. Wh
large, this is a realistic value for high-quality samples.
general, one can say that, for a given intrinsic dephasing
should choose the pulse as long as possible~but shorter than
the dephasing time!, because this avoids complications d

FIG. 7. TheA-b1 diagram~input pulse area vs nonlinear ex
change parameter! shows the effect of reduction in the real part
the parameterb1 on the area of the fundamental soliton (N51).
The results for two different input pulse durations are shown
comparison.
s.

n
J.

i B

d

e

ne

to higher-order exciton-exciton interactions and, at the sa
time, keeps the excitation-induced dephasing to a minim

V. SUMMARY

A solitonlike propagation of low-intensity ultrashort ligh
pulses in semiconductors, spectrally centered at
1s-exciton resonance, has been studied. An analytical sol
solution of the propagation equations for the electric fie
amplitude and the induced excitonic polarization has b
obtained in the limit of negligible phase-space filling effec
We have discussed the formal similarities between the e
tonic solitonlike pulse propagation and a model describ
propagation of temporal bright Kerr solitons in the presen
of self-steepening effects.

We have demonstrated numerically the formation a
propagation of solitary waves for experimentally releva
nonchirped sech-shaped initial pulses. The characteristic
these solitary pulses have been studied in detail and the
sumptions underlying the soliton model have been discus
We have shown that the pulse breakup, predicted by
model, is less pronounced in the presence of linear
excitation-induced dephasing processes. The results ma
useful for the understanding of more comprehensive mod
based on the numerical solution of the Maxwe
semiconductor Bloch equations including many-body effe
such as screening and excitation-induced dephasing.
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@31# W. Schäfer, K. H. Schuldt, and R. Binder, Z. Phys. B70, 145

~1988!.
@32# N. Peyghambarian, H. M. Gibbs, J. L. Jewell, A. Antonetti,
Migus, D. Hulin, and A. Mysyrowicz, Phys. Rev. Lett.53,
2433 ~1984!.

@33# D. R. Wake, H. W. Yoon, J. P. Wolfe, and H. Morkoc, Phy
Rev. B46, 13 452~1992!.

@34# S. Hughes, A. Knorr, S. W. Koch, R. Binder, R. Indik, and
V. Moloney, Solid State Commun.100, 555 ~1996!.

@35# P. C. Becker, D. Lee, M. R. X. de Barros, A. M. Johnson,
G. Prosser, R. D. Feldman, R. F. Austin, and R. E. Behring
IEEE J. Quantum Electron.28, 2535~1992!.

@36# D. J. Kaup and A. C. Newell, J. Math. Phys.19, 798 ~1978!.
@37# A. S. Rodrigues, M. Santagiustina, and E. M. Wright, Ph

Rev. A 52, 3231~1995!.
@38# D. C. Burnham and R. Y. Chiao, Phys. Rev.188, 667 ~1969!.
@39# M. D. Crisp, Phys. Rev. A1, 1604~1970!.
@40# L. Matulic and J. H. Eberly, Phys. Rev. A6, 822 ~1972!; L.

Matulic et al., J. Opt. Soc. Am. B8, 1276~1991!.
@41# I. Talanina, R. Binder, D. Burak, N. Peyghambarian, and

Giessen, inQuantum Electronics and Laser Science Conf
ence, 1997 OSA Technical Digest Series Vol. 12~Optical So-
ciety of America, Washington, D.C., 1997!, p. 192.


